Fisher Information

Score

The score is defined as the partial derivative of the likelihood function with respect to the parameters

θlogf(X;θ)\begin{equation*} \frac{\partial}{\partial \theta} \log f(X; \theta) \end{equation*}

Under certain regularity conditions, we can show that the expectation of score evaluated at true parameters equals to 0.

Fisher Information

Fisher information is defined to to be the variance of the score

I(θ):=Varθ(θlogf(Xθ))=Eθ[2θ2logf(Xθ)]\begin{equation*} I(\theta) := Var_\theta\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right) = -E_\theta\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta) \right] \end{equation*}

In matrix form, Fisher information matrix for kk parameters is a k×kk \times k matrix where the i,ji, j entry of the matrix is

I(θ)ij:=Covθ(θilogf(Xθ),θjlogf(Xθ))=Eθ[2θiθjlogf(Xθ)]\begin{equation*} I(\theta)_{ij} := Cov_\theta\left(\frac{\partial}{\partial \theta_i} \log f(X|\theta), \frac{\partial}{\partial \theta_j} \log f(X|\theta) \right) = -E_\theta\left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(X|\theta) \right] \end{equation*}

Last updated