Model Covariates Effect on Prior Probability

Given observations z1:Tz_{1:T}, and assume that we can divide covariates into the ones for prior (zt(pr)z_t^{(pr)}) and ones for model (zt(obs)z_t^{(obs)}) . The joint log-likelihood is

logf(Y1:T,S1:Tθ,z1:T)=t=1TlogP(Stθpr,zt(pr))+t=1Tlogf(YtSt,θobs,zt(obs))\begin{equation*} \log f(Y_{1:T}, S_{1:T}|\theta, z_{1:T}) = \sum_{t=1}^T \log P(S_t|\theta_{pr}, z_t^{(pr)}) + \sum_{t=1}^T\log f(Y_t|S_t, \theta_{obs}, z_t^{(obs)}) \end{equation*}

Generally, we can model the effects of covariates on initial probabilities as multinomial logistic regression.

logP(St=iθpr,zt(pr))P(St=Nθpr,zt(pr))=zt(pr)βiP(St=iθpr,zt(pr))=exp(zt(pr)βi)j=1Nexp(zt(pr)βj)\begin{align*} & \log \frac{P(S_t = i|\theta_{pr}, z_t^{(pr)})}{P(S_t = N|\theta_{pr}, z_t^{(pr)})} = z_t^{(pr)}\beta_i \\ & P(S_t = i|\theta_{pr}, z_t^{(pr)}) = \frac{\exp(z_t^{(pr)}\beta_i)}{\sum_{j=1}^N \exp(z_t^{(pr)}\beta_j)} \end{align*}
  • Let the parameters for the baseline state (e.g.: State N) to be 0

This means when applying the EM algorithm, we need to find values θpr\theta_{pr} to maximize:

t=1Ti=1Nγt(i)logP(St=iθpr,zt(pr))\begin{equation*} \sum_{t=1}^T \sum_{i=1}^N \gamma_t(i)\log P(S_t=i|\theta_{pr}, z_t^{(pr)}) \end{equation*}

Last updated