power

Notes are primarily taken from the textbook Mathematical Statistics and Data Analysis by John Rice 3rd edition

Definition

The power of a test is the probability of rejecting the null hypothesis when it is false.

Case of two-sample t test and using normal distribution approximation

For a two-sample t t test, power depends on

  1. The real difference =μxμy\triangle = \left|{\mu_x - \mu_y}\right|

  2. α\alpha

  3. Population standard deviation σ\sigma

  4. Sample size n,mn, m

Suppose that σ,α,\sigma, \alpha, \triangle are all given and both samples are size nn, then we can get the varaince of mean difference as

Var(XˉYˉ)=σ2(1n+1n)=2σ2nVar(\bar{X} - \bar{Y}) = \sigma^2 (\frac{1}{n} + \frac{1}{n}) = \frac{2\sigma^2}{n}

The two tailed test at level α\alphais now based on the standard normal (approximating t with normal distribution):

Z=XˉYˉσ2/nZ = \frac{\bar{X} -\bar{Y}}{\sigma \sqrt{2/n}}

So the rejection region is Z>z(α/2)\left| Z \right| > z(\alpha/2) or XˉYˉ>z(α/2)σ2/n\left|\bar{X} - \bar{Y}\right| > z(\alpha/2) \sigma \sqrt{2/n}

The power of this test is the probability that the test statistics falls in the rejection region under null hypothesis, which is :

P(XˉYˉσ2/n>z(α/2))=P(XˉYˉ>z(α/2)σ2/n)=P(XˉYˉ>z(α/2)σ2/n)+P(XˉYˉ<z(α/2)σ2/n)=P((XˉYˉ)σ2/n>z(α/2)σ2/nσ2/n)+P(XˉYˉ<z(α/2)σ2/n)=1Φ(z(α/2)σn/2)+P(XˉYˉ<z(α/2)σ2/n)=1Φ(z(α/2)σn/2)+Φ(z(α/2)σn/2)\begin{align*} & P\left( \left|\frac{\bar{X} -\bar{Y}}{\sigma \sqrt{2/n}}\right| > z(\alpha/2) \right)\\ & = P\left( \left|\bar{X} - \bar{Y}\right| > z(\alpha/2) \sigma \sqrt{2/n} \right) \\ & = P\left(\bar{X} - \bar{Y} > z(\alpha/2) \sigma \sqrt{2/n} \right) + P\left( \bar{X} - \bar{Y} < -z(\alpha/2) \sigma \sqrt{2/n} \right) \\ & = P\left(\frac{(\bar{X} - \bar{Y})-\triangle}{\sigma \sqrt{2/n}} > \frac{z(\alpha/2) \sigma \sqrt{2/n}-\triangle}{\sigma\sqrt{2/n}} \right) + P\left( \bar{X} - \bar{Y} < -z(\alpha/2) \sigma \sqrt{2/n} \right)\\ & = 1 - \Phi\left( z(\alpha/2) - \frac{\triangle}{\sigma}\sqrt{n/2}\right) + P\left( \bar{X} - \bar{Y} < -z(\alpha/2) \sigma \sqrt{2/n} \right)\\ & = 1 - \Phi\left( z(\alpha/2) - \frac{\triangle}{\sigma}\sqrt{n/2}\right) + \Phi\left( -z(\alpha/2) - \frac{\triangle}{\sigma}\sqrt{n/2}\right) \end{align*}

Last updated